Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 4351-4362, 2021.
Article in Chinese | WPRIM | ID: wpr-921511

ABSTRACT

To explore the function of a heat shock transcription factor gene (HSFB1) and its promoter in Amorphophallus, a 1 365 bp DNA sequence was obtained by homologous cloning from Amorphophallus albus. The gene expression level of AaHSFB1 determined by qRT-PCR indicated that AaHSFB1 gene is more sensitive to heat stress. The expression level of AaHSFB1 in roots increased followed by a decrease upon heat treatment, and the highest expression level was observed after heat treatment for 1 h. The expression level of AaHSFB1 in leaves reached the highest after heat treatment for 12 h. The expression level in bulbs did not change greatly during the heat treatment. Subcellular localization analysis showed that AaHSFB1 protein was localized in the nucleus. A 1 509 bp DNA sequence which contains the AaHSFB1 promoter was obtained by FPNI-PCR method. Bioinformatics analysis showed that the promoter contained heat stress response elements HSE and a plurality of cis-acting elements related to plant development and stress response. A prAaHSFB1::GUS fusion expression vector was constructed to further analyze the function of AaHSFB1 promoter. The expression vector was transformed into Arabidopsis thaliana by Agrobacterium tumefaciens-mediated method, and GUS staining analysis on transgenic plants after heat treatment was performed. The results showed that AaHSFB1 promoter had very high activity in the leaves. Therefore, we speculate that AaHSFB1 may play an important role in the stress resistance of A. albus, especially when encountering heat stress.


Subject(s)
Amorphophallus/metabolism , Arabidopsis/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL